Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 317: 115358, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636109

RESUMO

Natural habitats in rural and urban areas are increasingly fragmented and altered by human impacts that are limiting the animal and plant dispersal process. Fragmentation and isolation can be reversed by restoring landscape connectivity through effective Ecological Network (EN) planning. However, most of the studies analyzing the influence of connectivity and landscape structure on biodiversity are focused on animals, while the understanding of their interplaying role on plant diversity remains limited. We studied the relationships between α and ß diversity pattern and landscape structure and connectivity in the nodes of an EN developed in agricultural landscapes, as a part of regional landscape planning framework in Friuli Venezia Giulia region (North-East of Italy). As an innovation, the study aims at parsing the interacting effect of landscape structure, surrounding habitats and nodes, and structural connectivity on EN plant diversity at two specific scales of investigation i.e., the habitat and the node scale. The habitat was the basic ecological unit, while the node was the basic cartographical unit for the EN mapping (multi-habitat or mono-habitat nodes). A total of 443 plant species were collected across 219 sample plots, in 14 different habitats and 87 nodes of the EN. We found that high node connectivity leads to higher species richness (α-diversity) but also increases plant community similarity (i.e., low ß-diversity) at both scales. The effect of landscape structure showed differing trends depending on the habitat. In general, landscape composition of semi-natural land cover (i.e., hedgerows, watercourses) showed a positive effect on species diversity as opposed to that of the configuration of anthropogenic elements on both scales. Our results provided crucial information on the landscape processes useful to improving biodiversity conservation by EN. Our findings suggest that i) improving connectivity within ENs favors α plant diversity ii) different habitats have different sensibility to landscape structure iii) semi-natural land cover around nodes improve plant diversity; iv) planning both mono-habitat and multi-habitats nodes, increases the biodiversity conserved therein; v) nodes with more compact shapes are to be preferred.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Animais , Itália , Plantas
2.
PeerJ ; 9: e12306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820165

RESUMO

Intensification of agricultural landscapes represent a major threat for biodiversity conservation also affecting several ecosystem services. The natural and semi-natural remnants, available in the agricultural matrix, represent important sites for small mammals and rodents, which are fundamental for sustaining various ecosystem functions and trophic chains. We studied the populations of two small mammals (Apodemus agrarius, A. sylvaticus) to evaluate the effects of landscape and habitat features on species abundance along a gradient of agricultural landscape intensification. The study was performed in Friuli Venezia Giulia (north-eastern Italy) during 19 months, in 19 wood remnants. Species abundance was determined using Capture-Mark-Recapture (CMR) techniques. In the same plots, main ecological parameters of the habitat (at microhabitat and patch scale) and landscape were considered. Abundance of A. agrarius increased in landscapes with high extent of permanent crops (i.e., orchards and poplar plantations) and low content of undecomposed litter in the wood understory. Instead, A. sylvaticus, a more generalist species, showed an opposite, albeit less strong, relationship with the same variables. Both species were not affected by any landscape structural feature (e.g., patch shape, isolation). Our findings showed that microhabitat features and landscape composition rather than wood and landscape structure affect populations' abundance and species interaction. The opposite response of the two study species was probably because of their specific ecological requirements. In this light, conservation management of agricultural landscapes should consider the ecological needs of species at both landscape and habitat levels, by rebalancing composition patterns in the context of ecological intensification, and promoting a sustainable forest patch management.

3.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27559064

RESUMO

Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Solo , Produtos Agrícolas , Controle de Plantas Daninhas
4.
Environ Manage ; 55(2): 443-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392019

RESUMO

Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures.


Assuntos
Agricultura/métodos , Biodiversidade , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/classificação , Itália , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...